BioDesign course – bridging science and art
Biologist/architect team Tobi Lyn Schmidt and Mike Bogan created a course linking artists, designers, architects, and biologists from the California College of the Arts (CCA) and Stanford University. I served as a postdoc mentor to help inspire and guide the process of cross-hybridizing biology and design (some examples) with three really talented undergraduate CCA students: Leslie Greene, Sakurako Gibo, and David Lee.
The students were first charged with creating designs to illustrate scientific concepts in my field of research. I challenged them think about the issue of scale with respect to the biogeochemical cycles I study. The processes I investigate occur over a wide range of spatial and temporal scales, which is a challenge for their measurement and interpretation. David focused on a selection of atmospheric trace gases with a wide range of abundances, and that interact with each other through key reactions. In his image, the hydroxyl radical (OH) is illustrated by the white dot from which orange and blue strings respectively represent the path length to molecules of hydrogen (H2) and methane (CH4) in the surrounding space. The density of the strings is representative of the concentration of H2 and CH4 relative to OH. I love the sense of competition in this image. These reduced molecules compete for reaction with OH, and with other trace gases not shown, which helps explain the relatively their long lifetimes of H2 (~2 years) and CH4 (~10 years) in the atmosphere.
The second task for the students was to manipulate a biological system for design or artistic ends. All three students visited the Welander geobiology lab at Stanford and the Berry lab at Carnegie on campus where atmospheric trace gases are measured. For her project, Leslie was interested in manipulating microorganisms to reveal art. Using a combination of strains from the lab and purchased online, Leslie created competitive interactions between organisms and against antibiotics to reveal structures that were both patterned and complex. In the example below, she laid a cross-pattern of Streptomyces ghanaensis and Bacillus subtilis colonies and let them grow and compete. Intriguing features arose, appearing as if the Streptomyces strain grew on top of the Bacillus strain, perhaps antagonistically or not. Leslie overlaid emergent patterns in topology and color from microbial cultures with and without competition to create an amazing image that reveals some very aesthetic order in the systems.
Finally, the students illustrated various concepts related to my work including artistic renditions of Streptomyces colonies and concepts of complexity (see related post). I really love the feel of the image created by Sakurako Gibo showing the atmospheric H2 concentrations that I measured between the ground and top of a measurement tower (y-axis) over the year-long experiment (x-axis) at Harvard Forest as an ephemeral curtain. Higher concentrations of H2 are represented with a deeper intensity of blue. The impact of the soil sink is illustrated by the lightening of the color near the base of the image caused by high rates of soil microbial H2 consumption in summer and fall.