Teaching plant biogeography for the EAPS Extreme Weather and Climate course
This week I traveled up to Mt. Washington with this year’s EAPS FPOP (Freshman Pre-Orientation Program) Discover Earth, Atmosphere and Planetary Sciences: Extreme Weather & Climate. It’s the third time I’ve acted as a TA for the program by heading up the flora and fauna section, or what is now more commonly known as “Flora with Laura.”
The 3 day program is Spotlighted on the PAOC website, which describes it as being “designed to provide incoming freshmen with the opportunity to explore the science of weather and climate through an exciting combination of lectures and fluids experiments, providing a glimpse into some of the most interesting and challenging aspects of research in PAOC.”
I’ve always be interested in plants. My father (and now one of my sisters) is a forester in the diverse mixed forests of Southern Oregon. The flora of trails I’ve hiked always interested me, especially the relationships between plant communities and regional climate (and even micro-climates) that were obvious even to my untrained eyes. Shrubby grasslands cover convex faces of the hills in Big Sur, CA, while coastal redwoods thrive in the moist and cool concave recesses. The towering forests of the North Cascades, WA are a world apart from the flowering cacti of the Mojave. However, it wasn’t until I took the Field Course in Arctic Science, held at both the University of Alaska, Fairbanks and the remote Toolik Field Station on the North Slopes of Alaska, that I formally learned about the adaptations of plants (and animals) to climate. We focused on different strategies plants employ for survival in harsh environments, specifically to arctic environments.
The material from that course translates beautifully to Mt. Washington because, just as plants adapt to the harsher climates found at higher latitudes, the plants found at different altitudes on Mt. Washington must adapt to increasingly harsher alpine conditions. Therefore, the altitude gradient on a mountain in Massachusetts reflects the latitudinal gradient from Massachusetts to the northernmost reaches of Alaska. Interestingly, many of the species on the summits of New England are also found in northern most Alaska – the alpine mountain top climes are the last refuge of arctic plants that extended to mid-latitudes during the last ice age.
The DEAPS group ascends the Mt. Washington auto road from the base near Pinkham Notch at 2032 ft to the peak at 6288 ft. The students make temperature, wind speed and pressure measurements to note how the weather varies up the mountain on that day. I teach them how to use the plant ecosystems as the key indicator of the year-long weather experienced at different altitudes on the mountain. The presence of plants that are adapted to cold temperatures, short growing seasons, ice and wind abrasion, high uv light, low water and nutrient retention, and other environmental stresses are visual indicators of the harshness of the year-round weather on Mt. Washington. Students note how these hardy plants increase in prevalence as we ascend the mountain, which confirms their lessons in how weather up the mountain also becomes more extreme.
Beyond the actual instruction, it’s a unique opportunity to interact with incoming MIT freshman; often we are the first group of MIT students and staff that they interact with upon arrival. Students come from all over the country and the world, and they are eager to start their academic and personal lives at MIT.